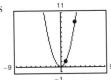
Review Exercises for Chapter 1 (page 91)

1. Calculus



Estimate:	8.3
LJOURING.	

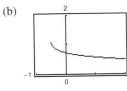
3.	x -0.1		-0.01	-0.001	
	f(x)	-1.0526	-1.0050	-1.0005	

x	0.001	0.01	0.1	
f(x)	-0.9995	-0.9950	-0.9524	

The estimate of the limit of f(x), as x approaches zero, is -1.00.

- **5.** 5; Proof **7.** -3; Proof **9.** (a) 4 (b) 5 **11.** 16
- **13.** $\sqrt{6} \approx 2.45$ **15.** $-\frac{1}{4}$ **17.** $\frac{1}{2}$ **19.** -1 **21.** 75
- **23.** 0 **25.** $\sqrt{3}/2$ **27.** $-\frac{1}{2}$ **29.** $\frac{7}{12}$

$$\lim_{x \to 1^+} f(x) \approx 0.5773$$



The graph has a hole at x = 1. $\lim_{x \to 1^+} f(x) \approx 0.5774$

- (c) $\sqrt{3}/3$
- **33.** -39.2 m/sec **35.** -1 **37.** 0
- **39.** Limit does not exist. The limit as t approaches 1 from the left is 2 whereas the limit as t approaches 1 from the right is 1.
- **41.** Continuous for all real *x*

- **43.** Nonremovable discontinuity at each integer Continuous on (k, k + 1) for all integers k
- **45.** Removable discontinuity at x = 1 Continuous on $(-\infty, 1) \cup (1, \infty)$
- **47.** Nonremovable discontinuity at x = 2 Continuous on $(-\infty, 2) \cup (2, \infty)$
- **49.** Nonremovable discontinuity at x = -1 Continuous on $(-\infty, -1) \cup (-1, \infty)$
- **51.** Nonremovable discontinuity at each even integer Continuous on (2k, 2k + 2) for all integers k
- **53.** $c = -\frac{1}{2}$ **55.** Proof
- 57. (a) -4 (b) 4 (c) Limit does not exist.
- **59.** x = 0 **61.** x = 10 **63.** $-\infty$ **65.** $\frac{1}{3}$
- 67. $-\infty$ 69. $-\infty$ 71. $\frac{4}{5}$ 73. ∞
- **75.** (a) \$14,117.65 (b) \$80,000.00 (c) \$720,000.00 (d) ∞

P.S. Problem Solving (page 93)

1. (a) Perimeter $\triangle PAO \doteq 1 + \sqrt{(x^2 - 1)^2 + x^2} + \sqrt{x^4 + x^2}$ Perimeter $\triangle PBO = 1 + \sqrt{x^4 + (x - 1)^2} + \sqrt{x^4 + x^2}$

x	4	2	1
Perimeter △PAO	33.0166	9.0777	3.4142
Perimeter △ <i>PBO</i>	33.7712	9.5952	3.4142
r(x)	0.9777	0.9461	1.0000

x	0.1	0.01
Perimeter △PAO	2.0955	2.0100
Perimeter △ <i>PBO</i>	2.0006	2.0000
r(x)	1.0475	1.0050

- (c) 1
- 3. (a) Area (hexagon) = $(3\sqrt{3})/2 \approx 2.5981$ Area (circle) = $\pi \approx 3.1416$ Area (circle) - Area (hexagon) ≈ 0.5435
 - (b) $A_n = (n/2) \sin(2\pi/n)$

(c)	n	6	12	24	48	96
	A_n	2.5981	3.0000	3.1058	3.1326	3.1394

- (d) $3.1416 \text{ or } \pi$
- **5.** (a) $m = -\frac{12}{5}$ (b) $y = \frac{5}{12}x \frac{169}{12}$
 - (c) $m_x = \frac{-\sqrt{169 x^2 + 12}}{x 5}$
 - (d) $\frac{5}{12}$; It is the same as the slope of the tangent line found in (b).
- **7.** (a) Domain: $[-27, 1) \cup (1, \infty)$
 - (b) 0.5 -30 -0.1

(c) $\frac{1}{14}$ (d) $\frac{1}{12}$

The graph has a hole at x = 1.

9. (a) g_1, g_4 (b) g_1 (c) g_1, g_3, g_4

11.

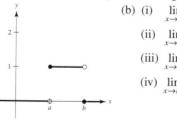
The graph jumps at every integer.

(a)
$$f(1) = 0$$
, $f(0) = 0$, $f(\frac{1}{2}) = -1$, $f(-2.7) = -1$

(b)
$$\lim_{x \to 1^{-}} f(x) = -1$$
, $\lim_{x \to 1^{+}} f(x) = -1$, $\lim_{x \to 1/2} f(x) = -1$

(c) There is a discontinuity at each integer.

13. (a)



- (b) (i) $\lim_{x \to a^+} P_{a, b}(x) = 1$
 - (ii) $\lim_{x \to a^{-}} P_{a,b}(x) = 0$
 - $x \to a^{-1} \quad a, b(0)$
 - (iii) $\lim_{x \to b^+} P_{a, b}(x) = 0$
 - (iv) $\lim_{x \to b^{-}} P_{a, b}(x) = 1$
- (c) Continuous for all positive real numbers except a and b
- (d) The area under the graph of U and above the x-axis is 1.